Clark County is committed to enhancing mobility and safety for all modes of transportation including bicycles and pedestrians. In line with the mission statement of the Clark County Traffic Engineering Section, the county has prepared this Pedestrian Crossing Treatment Policy. The purpose of this policy is to recommend appropriate pedestrian crossing treatments to enhance pedestrian safety and to ensure continued pedestrian mobility.

In accordance with the Washington State Department of Transportation’s Design Manual, the indiscriminate marking of pedestrian crossings is discouraged because the overuse of marked crosswalks leads to unsafe pedestrian crossing conditions and non-compliance of traffic control by drivers. The policy utilizes objective criteria to recommend pedestrian crossing treatments under varying sets of roadway geometrics, traffic operations and pedestrian crossing demand.

With a focus on uniformity of application, this policy follows a three-step process to guide the consideration and selection of pedestrian crossing treatments.

1) Pedestrian Crossing Treatment Decision Trees
2) Enhanced Crossing Treatment Selection Table
3) Pedestrian Crossing Toolbox Cut Sheets

The methodology was primarily based upon pedestrian delay from the Highway Capacity Manual. The delay analysis evaluated a set of typical pedestrian crossings to determine appropriate crossing treatments based on established delay thresholds. The hierarchy of treatment options recommended in this policy is based on the latest research regarding drivers yielding to pedestrians.

The guidance provided in this document must be followed up with an engineering evaluation including a field assessment prior to finalizing a decision regarding a pedestrian crossing treatment. Pedestrian treatment options listed in this document may be modified to include a combination of treatment options or alternate treatment options may be provided for unique cases.
TABLE OF CONTENTS

LIST OF FIGURES ...ii

LIST OF TABLES ...ii

CHAPTER 1: INTRODUCTION ...1
 1.1 Pedestrian Crossing Treatment Policy Background ...1
 1.2 Pedestrian Crossing Treatment Decision Process ...1

CHAPTER 2: CROSSWALK BASICS ..3
 2.1 Definitions ..3
 2.2 Laws and Rules about Pedestrian Crossings ...4

CHAPTER 3: PEDESTRIAN CROSSING TREATMENTS ..9
 3.1 Pedestrian Crossing Treatment Decision Trees ..9
 3.2 Enhanced Crossing Treatment Selection Table ..13
 3.3 Pedestrian Crossing Toolbox Cut Sheets ...13

Appendix
 Appendix A: Enhanced Pedestrian Crossing Treatment Decision Tool Memo
 Appendix B: Crossing Evaluation Worksheets
 Appendix C: HCM Pedestrian Delay Analysis Results
LIST OF FIGURES

Figure 1. Pedestrian Crossing Treatment Decision Process ... 2
Figure 2. Sources for Pedestrian Crossing Laws and Rules .. 4
Figure 3. Uncontrolled Crossing Decision Tree ... 10
Figure 4. Controlled Crossing Decision Tree .. 11
Figure 5. School Crosswalk Decision Tree .. 12
Figure 6. Enhanced Crossing Treatment Selection Table ... 14
Figure 7. Marked Crosswalk Cut Sheet ... 15
Figure 8. Flashing Beacon Cut Sheet .. 16
Figure 9. Pedestrian Hybrid Beacon Cut Sheet ... 17

LIST OF TABLES

Table 1. RCWs pertaining to pedestrian crossings .. 6
Table 2. WACs pertaining to pedestrian crossings .. 7
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ADT</td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>HCM</td>
<td>Highway Capacity Manual</td>
</tr>
<tr>
<td>MUTCD</td>
<td>Manual on Uniform Traffic Control Devices</td>
</tr>
<tr>
<td>MPH</td>
<td>Miles per Hour</td>
</tr>
<tr>
<td>NCHRP</td>
<td>National Cooperative Highway Research Program</td>
</tr>
<tr>
<td>PHB</td>
<td>Pedestrian Hybrid Beacon</td>
</tr>
<tr>
<td>RCW</td>
<td>Revised Code of Washington</td>
</tr>
<tr>
<td>SSD</td>
<td>Stopping Sight Distance</td>
</tr>
<tr>
<td>WAC</td>
<td>Washington Administrative Code</td>
</tr>
<tr>
<td>WSDOT</td>
<td>Washington State Department of Transportation</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

1.1 Pedestrian Crossing Treatment Policy Background

Clark County, Washington has been experiencing an increased demand to provide enhanced pedestrian facilities. As demand for pedestrian mode of travel continues to increase, the County is committed to provide infrastructure for a seamless network and efficient movement of pedestrians, including a variety of pedestrian crossing treatments. The Clark County Pedestrian Crossing Treatment Policy has developed decision-making guidelines to help recommend the appropriate pedestrian crossing treatment, best suited for each potential location. This policy is intended to inform and guide developers and County staff about triggers, considerations, and requirements associated with the implementation of enhanced crossing treatments within Clark County.

The purpose of this policy is to define trigger points for pedestrian crossing treatments and recommend appropriate pedestrian crossing treatments to enhance pedestrian safety and to ensure continued pedestrian mobility.

The guidelines provided in this policy cover the suitability of marked crosswalks, flashing beacons and pedestrian hybrid beacons, and standards for traffic control devices including signing, striping, pavement markings, and illumination to ensure consistent and uniform applications. The crossing treatment applications contained in this document are not the only treatments that may be used. Variations of the above mentioned treatments or other pedestrian crossing treatments as prescribed in the Federal Highway Administration's Pedestrian Crossing Treatment Toolbox\(^1\) may be used to address unique situations.

1.2 Pedestrian Crossing Treatment Decision Process

This policy introduces the Pedestrian Crossing Treatment Decision Process, which includes three steps that guide the consideration and selection of pedestrian crossing treatments. The three-step process, outlined below in Figure 1, includes Pedestrian Crossing Treatment Decision Trees for controlled crossings at intersections, uncontrolled crossings at intersections or mid-block locations and school crossing locations; an Enhanced Crossing Treatment Selection Table; and conceptual Pedestrian Crossing Toolbox Cut Sheets to guide facility implementation.

\(^1\) https://www.fhwa.dot.gov/publications/research/safety/01102/01102.pdf
The following describes the pedestrian crossing treatment decision process in further detail:

1. **Pedestrian Crossing Treatment Decision Trees**
 - Initial assessment to determine the potential for pedestrian crossing treatments
 - Specific guidance for locations that are: controlled, uncontrolled, and at schools

2. **Enhanced Crossing Treatment Selection Table**
 - Provides various treatment options for potential locations
 - Categorizes facilities based on roadway type, roadway volume, and speed

3. **Pedestrian Crossing Toolbox Cut Sheets**
 - Guidance on traffic control, layout, and other requirements to install three crossing treatment types, including: marked crosswalks, flashing beacons, and pedestrian hybrid beacons

Figure 1. Pedestrian Crossing Treatment Decision Process

The following describes the pedestrian crossing treatment decision process in further detail:

1. **Pedestrian Crossing Treatment Decision Trees**
 - The decision trees are an initial assessment to assist in determining the suitability of pedestrian crossing treatments at an existing or proposed pedestrian crossing location based on a series of criteria. This includes specific guidance on locations that are uncontrolled, controlled (for both signals and stop signs), or near schools, and includes criteria that considers shared-use path locations, roadway volumes, pedestrian volumes, and proximity to existing crosswalks. To prevent proliferation of unwarranted marked crosswalks, the use of traffic engineering guidelines such as the Washington State Department of Transportation’s Design Manual discourages the indiscriminate use of marked crosswalks. An engineering evaluation including a field assessment should always be conducted prior to finalizing a decision regarding a pedestrian crossing treatment. In addition, a pedestrian crossing treatment may be provided to channelize pedestrians at a certain location.

2. **Enhanced Crossing Treatment Selection Table**
 - The selection table provides appropriate treatment options for potential locations under various sets of pedestrian, vehicle, and roadway conditions. The table categorizes facilities based on roadway type, roadway volume, and speed at specific crossing locations under consideration.

3. **Pedestrian Crossing Toolbox Cut Sheets**
 - The cut sheets provide implementation guidance on traffic control, general layout, and other requirements to install three crossing treatment types, including marked crosswalks, flashing beacons, and pedestrian hybrid beacons (PHB).
CHAPTER 2: CROSSWALK BASICS

2.1 Definitions

An unmarked crosswalk is a legal crossing, at a public road intersection, without any pavement marking feature delineating the crossing. Unmarked crosswalks include the portion of the roadway behind a prolongation of the curb or edge of the through traffic lane and a prolongation of the farthest sidewalk connection.²

A marked crosswalk is a legal crossing with the traffic control feature of pavement markings delineating the crossing. Marked crosswalks can be used at intersections or mid-block locations. Crosswalks are not to be marked indiscriminately. When crosswalks are marked, they shall follow Clark County Standard Detail T3.0.

Controlled crossings are legal crosswalks across a roadway approach that is controlled by a positive regulatory traffic control device such as a stop sign, traffic signal or pedestrian hybrid beacon.

Uncontrolled crossings are legal crosswalks across a roadway approach not controlled by a positive regulatory traffic control device. Uncontrolled crossings can occur at intersections or mid-block locations. Uncontrolled crossings may need to be enhanced with additional warning devices in various forms such as static signs or flashing beacons.

Public road intersections are legal crossings for pedestrians even without the pavement marking. Because drivers do not expect pedestrians to cross at mid-block locations, it is preferable to install pedestrian crossing treatments at public road intersections. There are situations where a mid-block pedestrian crossing can be considered, however engineering judgment should be used and the decision to recommend a mid-block pedestrian crossing should be documented. Factors to include regarding the use of mid-block pedestrian crossings include the following:

- On roadways with very high pedestrian crossing traffic caused by nearby pedestrian generators.
- Modal interchange points where high volumes of crossing pedestrians occur (e.g., transit stop to an apartment complex).
- High pedestrian crossing volumes present with long block spacing and the out-of-direction travel to the nearest controlled crossing exceeds 600 feet.
- Crash history at mid-block locations.
- Realistic opportunity to channel multiple pedestrian crossings to a single location.
- Sight lines that enable sufficient eye contact between motorists and pedestrians.
- Community commitment for a successful outcome.
- Ability to mitigate risks associated with the location using proven countermeasures such as, but not limited to, refuge islands, flashing beacons, and/or pedestrian hybrid beacons.³

Care should be taken to ensure that all signing, striping, and pavement markings intended to warn the drivers of the approaching mid-block pedestrian crossing locations are conspicuous to the maximum extent possible.

School crossings are uncontrolled crossings, and Clark County requires the protection of an adult crossing guard. See the Clark County School Zone Traffic Control Policy for further detail.

² WSDOT Design Manual Section 1510.10(2)(a)
³ WSDOT Design Manual Section 1510.10
2.2 Laws and Rules about Pedestrian Crossings

Laws and rules about pedestrian crossings are set at both the national, state, and county levels. Several national, state, and county manuals provide guidance on the implementation of pedestrian crossing traffic control devices that are compliant with the laws. National guidance should be used unless there is a Washington State or Clark County modification in place. Figure 2 shows the sources for laws and rules that were used to develop this policy regarding pedestrian crossings grouped at the national, state and county levels.

![Figure 2. Sources for Pedestrian Crossing Laws and Rules](image)

Manual on Uniform Traffic Control Devices (MUTCD)

The MUTCD, published by the Federal Highway Administration (FHWA), sets national standards and guidelines for traffic control devices along facilities open to public travel (see Appendix A for more details).

Traffic control devices for pedestrian crossings are covered in various parts of the manual (Parts 2, 3, and 4). The MUTCD provides guidance on the following items related to pedestrian crossings:

- Pedestrian crossing signs and pavement markings
- Warrants for traffic signals based on pedestrian volume
- Warrants for pedestrian hybrid beacons
- Provisions for pedestrians at signalized locations

Uniform application of traffic control devices is a proven method of improving safety at pedestrian crossings. Uniformity avoids confusion among road users and promotes consistent behavior and expectations.
The MUTCD emphasizes the importance of uniformity by providing standards and guidance on many aspects of signing and pavement markings, such as sign sizes, color, location, mounting height, and retro-reflectivity.

Highway Capacity Manual (HCM)

The HCM provides methods to quantify highway capacity and quality of service. The HCM is published by the Transportation Research Board and is the national standard.

It consists of four dimensions:

- Quantity of travel, the magnitude of use of a transportation facility or service;
- Quality of travel, users’ perceptions of travel on a transportation facility or service with respect to their expectations;
- Accessibility, the ease with which travelers can engage in desired activities; and
- Capacity, the ability of a transportation facility or service to meet the quantity of travel demanded of it.

Quality of service for uncontrolled pedestrian crossings is covered in Chapter 20, which is based on pedestrian delay and is linked to a pedestrian’s likelihood of risk taking behavior.

National Cooperative Highway Research Program (NCHRP) 562 – Improving Pedestrian Safety at Unsignalized Crossings

NCHRP 562 provides guidelines that can be used to select pedestrian crossing treatments for unsignalized intersections and mid-block locations based on data collected and analyzed through the research study. The guidelines are based on pedestrian volume, street crossing width, speed and traffic volume. The recommendations include a marked crosswalk, enhanced/high-visibility/“active when present” traffic control device, red signal or beacon device and a conventional traffic control signal. The report also provides a spreadsheet that can be used to determine the appropriate pedestrian crossing treatment per their recommendations. In addition to the guidance on pedestrian crossing treatments, NCHRP 562 also provides modifications to the MUTCD signal warrants for pedestrian volume, which are difficult to meet in many cases.

NCHRP 562 was developed with two main objectives:

- Identify pedestrian crossing treatments to improve safety for pedestrians crossing high-volume and high-speed roadways at unsignalized locations.
- Recommend modifications to the MUTCD pedestrian traffic signal warrant guidance.

Revised Code of Washington (RCW)

The Revised Code of Washington (RCW) is a compilation of the current laws in the state of Washington. Title 46 relates to motor vehicle laws and Title 61 is specific to rules of the road. Several RCWs apply to pedestrian crossings, as described in Table 1.
Table 1. RCWs pertaining to pedestrian crossings

<table>
<thead>
<tr>
<th>RCW Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 46.61.065 | Flashing signals | Whenever an illuminated flashing red or yellow signal is used in a traffic sign or signal it shall require obedience by vehicular traffic as follows:
- **FLASHING RED (STOP SIGNAL)** – vehicles shall stop at a clearly marked stop line, but if none, before entering a marked crosswalk on the near side of the intersection, or, if none, then at the point nearest the intersecting roadway where the driver has a view of approaching traffic on the intersecting roadway before entering the intersection, and the right to proceed shall be subject to the rules applicable after making a stop at a stop sign.
- **FLASHING YELLOW (CAUTION SIGNAL)** – vehicles may proceed through the intersection with caution. |
| 46.61.230 | Pedestrians subject to traffic regulations | Pedestrians shall be subject to traffic-control signals at intersections |
| 46.61.235 | Crosswalks | Vehicles shall stop and remain stopped to allow a pedestrian or bicycle to cross the roadway within an unmarked or marked crosswalk when the pedestrian or bicycle is upon or within one lane of the half of the roadway upon which the vehicle is traveling or onto which it is turning. For purposes of this section "half of the roadway" means all traffic lanes carrying traffic in one direction of travel, and includes the entire width of a one-way roadway.
- Pedestrians and bicyclists shall not suddenly leave a curb or other place of safety and move into the path of a vehicle which is so close that it is impossible for the driver to stop.
- Vehicles are not allowed to pass when a vehicle is stopped at a crosswalk for a pedestrian or bicyclist to cross the roadway. |
| 46.61.240 | Crossing at other than crosswalks | Pedestrians crossing a roadway at any point other than within a marked crosswalk or within an unmarked crosswalk at an intersection shall yield the right-of-way to vehicles.
- Where curb ramps exist at or adjacent to intersections or at marked crosswalks, disabled persons may enter the roadway from the curb ramps and cross the roadway within or as closely as practicable to the crosswalk.
- Pedestrians shall not cross at any place between adjacent signalized intersections except for a marked crosswalk.
- Pedestrians shall not cross a roadway intersection diagonally unless authorized by official traffic-control devices.
- Pedestrians shall not cross a roadway at an unmarked crosswalk where an official sign prohibits such crossing. |
<table>
<thead>
<tr>
<th>RCW Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.61.245</td>
<td>Drivers to exercise care</td>
<td>Drivers shall exercise due care to avoid colliding with any pedestrian upon any roadway</td>
</tr>
<tr>
<td>46.61.261</td>
<td>Sidewalks, crosswalks – Pedestrians, bicycles</td>
<td>Bicyclists shall yield right-of-way to a pedestrian on a crosswalk</td>
</tr>
</tbody>
</table>

Washington Administrative Code (WAC)

The Washington Administrative Code (WAC) amends the MUTCD to comply with laws and policies specific to the Revised Code of Washington (the RCWs). These amendments for pedestrian crossings are listed in Table 2.

Table 2. WACs pertaining to pedestrian crossings

<table>
<thead>
<tr>
<th>WAC Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>468-95-033</td>
<td>In-street pedestrian crossing sign (R1-6a)</td>
<td>MUTCD Section 2B.12 Amends the MUTCD regarding in-street pedestrian crossing signs to remove the ‘yield to pedestrians’ option and keeps the ‘stop for pedestrians’ option. Deletes signs R1-5, R1-5a, R1-6, and R1-9 from Figure 2B-2.</td>
</tr>
<tr>
<td>468-95-230</td>
<td>Crosswalk markings</td>
<td>MUTCD Section 3B.18 Amends the MUTCD regarding the crosswalk marking patterns.</td>
</tr>
<tr>
<td>468-95-360</td>
<td>Crosswalk markings</td>
<td>MUTCD Section 7C.02 Amends the MUTCD regarding the crosswalk marking patterns.</td>
</tr>
</tbody>
</table>

Washington State Department of Transportation (WSDOT) Traffic Manual and Sign Fabrication Manual

The WSDOT Traffic Manual provides guidance on pedestrian crossings, crosswalk specifications and standard details for crosswalks and stop lines (see Chapter 3). The WSDOT Sign Fabrication Manual provides fabrication details to maintain uniformity in appearance of signs.

Clark County Code

The Clark County Code is a codification of the general ordinances of Clark County, Washington. Title 10, vehicles and traffic, Title 12, streets and roads, and Title 40, unified development code, all include information regarding pedestrian crossings.

Clark County Standard Details

The Clark County Standard Details are provided for constructing various projects within the county. The details include roadway, drainage, sidewalk, and development and have been grouped according to specific construction categories. There are Clark County Standard Details for signing and striping.
Clark County School Zone Traffic Control Policy

The Clark County School Zone Traffic Control Policy, approved in 2016, provides clear guidance on the implementation of school zone traffic control under various sets of conditions. The policy provides assessments for when school crossings, reduced school speed zones, school areas, and school zone flashers should be implemented. Additionally, the policy includes details regarding signing, striping and illumination requirements.
CHAPTER 3: PEDESTRIAN CROSSING TREATMENTS

This policy is intended to inform and guide developers, and County staff the triggers, considerations, and requirements associated with implementing pedestrian crossing treatments within Clark County. The following three-step decision process guides the consideration and selection of pedestrian crossing treatments:

1. **Pedestrian Crossing Treatment Decision Trees:** The first decision point determines the potential for pedestrian crossing treatments, depending upon if the location is currently uncontrolled, controlled, or near a school.

2. **Enhanced Crossing Treatment Selection Table:** The outcome of the applicable decision tree may direct the user to the Enhanced Crossing Treatment Selection Table. The selection table determines an appropriate crossing treatment, including a marked crosswalk only, flashing beacons, a raised pedestrian refuge island, a pedestrian hybrid beacon, traffic signal or a combination of the above.

3. **Pedestrian Crossing Toolbox Cut Sheets:** The toolbox includes signing, striping, and design considerations for various pedestrian crossing treatments to assist in facility implementation.

3.1 Pedestrian Crossing Treatment Decision Trees

The first decision point assists in determining the potential need for pedestrian crossing treatments at an existing crosswalk or a proposed pedestrian crossing location based on a series of criteria. The existing traffic control at the crossing location and proximity to a school (e.g., uncontrolled, controlled, or near a school) determines which decision tree to use. An uncontrolled location can be at an intersection or mid-block. A controlled location can be a signal, roundabout, or at a stop sign. A school crosswalk can be adjacent to school grounds or shown on a school route plan.

There are three decision trees: uncontrolled crossings, controlled crossings, and school crosswalks:

- Uncontrolled locations — see Figure 3
- Controlled locations — see Figure 4
- Locations near a school — see Figure 5

An evaluation worksheet for each type of crossing location is provided in Appendix B to help collect field data to identify what type of crossing treatment is appropriate based on the evaluation criteria. One outcome from the decision trees is to move on to Step 2 of the decision process, to see the Enhanced Crossing Treatment Selection Table (Figure 6).
UNCONTROLLED CROSSING DECISION TREE - Figure 3

UNCONTROLLED (INTERSECTION/MIDBLOCK)

- Is there a shared-use path* crossing roadway?
 - **NO**
 - Is the location crossing a road with ADT > 4,000?
 - **NO**
 - Does it meet any of the minimum pedestrian volumes of:
 - 20 peds/hour for any 1 hour
 - 18 peds/hour for any 2 hours
 - 15 peds/hour for any 3 hours
 - **YES**
 - Consider enhanced crossing treatment
 (see Treatment Selection Table)
 - **NO**
 - Adequate stopping sight distance?
 - **YES**
 - Nearest marked or protected crossing > 300 feet away?
 - **YES**
 - Direct pedestrians to nearest crossing
 - **NO**
 - Remove obstruction if possible, otherwise prohibit crossing and redirect to a safer crossing location
 - **NO**
 - Field review, as needed, for traffic engineering considerations**
 - **NO**
 - Nearest marked or protected crossing > 200 feet away?
 - **YES**
 - Direct pedestrians to nearest crossing
 - **NO**
 - Remove obstruction if possible, otherwise prohibit crossing and redirect to a safer crossing location

* Shared-use path defined as a public facility separated from motorized vehicular traffic for bicyclists and pedestrians.

** Traffic engineering considerations include, but are not limited to the following: pedestrian activity, vehicle turning movements, speed, crossing distance, and crash history.
CONTROLLED CROSSING DECISION TREE - Figure 4

CONTROLLED

- Signal or roundabout?
 - Install a marked crosswalk subject to traffic safety and operations

- Stop sign?
 - Is there a shared-use path* crossing roadway?
 - YES
 - Consider marked crosswalk at stopped approach (see Marked Crosswalk cut sheet)
 - NO
 - ADT ≥ 2,000 on stop controlled approach?
 - YES
 - Does it meet any of the minimum pedestrian volumes of:
 - 20 peds/hour for any 1 hour
 - 18 peds/hour for any 2 hours
 - 15 peds/hour for any 3 hours
 - YES
 - Consider marked crosswalk at stopped approach (see Marked Crosswalk cut sheet)
 - NO
 - Field review, as needed, for traffic engineering considerations**

* Shared-use path defined as a public facility separated from motorized vehicular traffic for bicyclists and pedestrians.

** Traffic engineering considerations include, but are not limited to the following: pedestrian activity, vehicle turning movements, speed on stop controlled approach, and crash history.
CRITERIA PER CLARK COUNTY SCHOOL ZONE TRAFFIC CONTROL POLICY

Is crossing location adjacent to a school ground and/or shown in school walk route plan?
- YES → Will more than 20 children use proposed crosswalk per any peak hour of the day?
 - YES → School crosswalk IS recommended
 - NO → See Controlled Crossing Decision Tree

Is crossing location at a signal, stop sign or roundabout?
- NO → See Uncontrolled Crossing Decision Tree
- YES → Is the school PK-8?
 - NO → Is ADT > 9,000 and number of travel lanes > 2?
 - NO → Is there an adjacent school crossing within 300 feet?
 - NO → Adequate stopping sight distance?
 - NO → Recommend only with an engineering study. Consider improvements in another location.
 - YES → School crosswalk IS recommended
 - YES → Consider enhanced crossing treatment (see Treatment Selection Table)
 - YES → See Controlled Crossing Decision Tree
3.2 Enhanced Crossing Treatment Selection Table

The Enhanced Crossing Treatment Selection Table (Figure 6) was developed based upon peer cities, the Zeeger table, and delay analysis from the Highway Capacity Manual.4 The HCM pedestrian delay was the primary influence on the selection table recommendations, the results of which are shown in Appendix C. The delay analysis evaluated a set of typical pedestrian crossings to determine delay thresholds to assist in the selection of the appropriate crossing treatment. A delay threshold of 30 seconds was used where only a marked crosswalk at an existing unmarked location would be sufficient.

The outcomes from the selection table include a marked crosswalk, flashing beacons, a raised pedestrian refuge island, a pedestrian hybrid beacon, or traffic signals. For each of those facilities, see the Pedestrian Crossing Toolbox Cut Sheets for further details on implementation.

The selection table shown in Figure 6 provides a preliminary recommendation, but requires a follow-up engineering study for the final treatment selection. The engineering study needs to account for factors such as sight distance, traffic safety, traffic operations, pedestrian population, and other field conditions. Additionally, a site-specific delay analysis using the HCM and field observation of gaps in traffic stream is required before a final treatment is selected.

3.3 Pedestrian Crossing Toolbox Cut Sheets

The following Pedestrian Crossing Cut Sheets provide implementation guidance on each of the different potential enhanced pedestrian crossing treatments. The Pedestrian Crossing Toolbox includes details about signing, striping, and design considerations for the following pedestrian crossing treatments:

- Marked Crosswalks (with and without an island) – see Figure 7
- Flashing Beacons (with and without an island) – see Figure 8
- Pedestrian Hybrid Beacons (with and without an island) – see Figure 9

Recommendations for Marked Crosswalks and Enhanced Pedestrian Crossing Treatments at Uncontrolled Locations

Roadway Type

<table>
<thead>
<tr>
<th>Vehicle ADT > 4,000 TO 6,000</th>
<th>Vehicle ADT > 6,000 TO 9,000</th>
<th>Vehicle ADT > 9,000 TO 12,000</th>
<th>Vehicle ADT > 12,000 TO 15,000</th>
<th>Vehicle ADT >15,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30 MPH</td>
<td>35 MPH</td>
<td>≥ 40 MPH</td>
<td>≤ 30 MPH</td>
<td>35 MPH</td>
</tr>
</tbody>
</table>

2 Lanes

- A
- B
- B
- B
- B
- B
- B
- B
- B
- E
- B
- B
- E

3 Lanes

- A
- A
- B
- C
- C
- D
- C
- D
- D
- C
- D
- E
- D
- D
- E

Multi-Lane

- C
- C
- C
- C
- C
- D
- C
- D
- E
- D
- D
- E
- D
- D
- E

Legend

- A: Marked Crosswalk
- B: Marked Crosswalk with Flashing Beacon
- C: Marked Crosswalk with Median Island
- D: Marked Crosswalk with Flashing Beacon and Median Island
- E: Marked Crosswalk with Pedestrian Hybrid Beacon (PHB) or Traffic Signal

Notes:

- *Shared use path crossing locations with ADT less than 4,000 ADT may qualify for marked crosswalks and/or enhanced pedestrian crossing treatments as shown in the column for “Vehicle ADT >4,000 to 6,000.”*

- *Installation of marked crosswalk or enhanced crossing treatment, at any location, subject to engineering study and judgement that accounts for factors such as sight distance, traffic safety, traffic operations, other field conditions and pedestrian population. The engineering study must include a site-specific delay analysis, using the HCM.*

References:

MARKED CROSSTRAILS

Marked crosswalks direct pedestrians to cross the street at a designated location either at intersections or midblock locations. Crosswalk markings are typically 8 feet wide, ladder-style, and are clearly marked and signed (see Clark County Standard Detail T3.0). They can be installed on either two-lane or multi-lane roadways as justified by an engineering study. Conceptual road sections with typical marked crosswalk signage and striping are shown below.

SIGNS + STRIPING

1. At Crosswalk
2. At Stop Line
3. No Parking Sign
4. Warning Sign

STOPLING SIGHT DISTANCE

The available stopping sight distance should be sufficiently long to enable a vehicle traveling at the posted speed listed to stop before reaching the stop line or prior to the crosswalk. A pedestrian crossing shall only be installed if the minimum sight distance to the stopping location is achieved. On-street parking or sight obstructions should be removed in stopping line of sight.

LIGHTING

Illuminate the entire midblock pedestrian crossing, including any refuge area in the roadway, and the sidewalks or shoulders adjacent to the crosswalk per the current WSDOT Design Manual, Chapter 1040. Lighting analysis should be performed to confirm that light levels will meet the standards listed below. Emphasis should be placed on positive lighting of the pedestrians in the crosswalk and any adjacent sidewalks.

FROM WSDOT DESIGN MANUAL EXHIBIT 1040-22: LIGHT LEVELS AND UNIFORMITY RATIOS

1. Typical condition is the warning of a potential stop situation. The distances are based on the 2011 AASHTO “Green Book,” Table 3-1, Stopping Sight Distance, with a modified brake reaction time of 4.0 seconds, to account for longer detection time.

2. Minimum Average Maintained Light Level / Minimum Light Level = Maximum Uniformity Ratio

3. Maximum Veiling Luminance / Average Luminance = Veiling Luminance Ratio

Note:
- Both midblock and intersection – different areas covered (see Exhibit 1040-B for intersection)

MEDIAN ISLAND WITH PEDESTRIAN REFUGE DETAIL

Preferred Option

- Yellow painted curb
- Yellow surface-mounted tubular markers
- Shy distance: 1’ min.; 2 min. recommended

Alternate Option

- Yellow painted curb
- Yellow surface-mounted tubular markers
- Shy distance: 1’ min.; 2 min. recommended

Minimum width of 5 feet to ensure a passing space is provided.

Pedestrian access routes of multi-use paths that go through raised medians shall be the same width as the multi-use path.

REFERENCE

WSDOT Design Manual, Exhibit 1510-22
STOPPING SIGHT DISTANCE

The available stopping sight distance should be sufficiently long to enable a vehicle traveling at the posted speed listed to stop before reaching the stop line. A midblock pedestrian crossing shall only be installed if the minimum sight distance to the stopping location is achieved. On-street parking or sight obstructions should be removed in stopping line of sight.

<table>
<thead>
<tr>
<th>Posted Speed (mph)</th>
<th>Stopping Sight Distance (SSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>155 ft</td>
</tr>
<tr>
<td>30</td>
<td>200 ft</td>
</tr>
<tr>
<td>35</td>
<td>250 ft</td>
</tr>
<tr>
<td>40</td>
<td>305 ft</td>
</tr>
<tr>
<td>45</td>
<td>360 ft</td>
</tr>
<tr>
<td>50</td>
<td>425 ft</td>
</tr>
</tbody>
</table>

1. Typical condition is the warning of a potential stop situation. The distances are based on the 2011 AASHTO “Green Book,” Table 3-1, Stopping Sight Distance.

LIGHTING

Illuminate the entire midblock pedestrian crossing, including any refuge area in the roadway, and the sidewalks or shoulders adjacent to the crosswalk per the current WSDOT Design Manual, Chapter 1040. Lighting analysis should be performed to confirm that light levels will meet the standards listed below. Emphasis should be placed on positive lighting of the pedestrians in the crosswalk and on the adjacent sidewalks.

FROM WSDOT DESIGN MANUAL EXHIBIT 1040-22: LIGHT LEVELS AND UNIFORMITY RATIOS

<table>
<thead>
<tr>
<th>Minimum Average Maintained Light Level / Minimum Light Level</th>
<th>Maximum Uniformity Ratio ²</th>
<th>Maximum Veiling Luminance Ratio ³</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Pedestrian/Area Classification (footcandles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highways without full access control – intersections</td>
<td>1.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

2. Minimum Average Maintained Light Level / Minimum Light Level = Maximum Uniformity Ratio
3. Maximum Veiling Luminance / Average Luminance = Veiling Luminance Ratio

REFERENCE

WSDOT Design Manual, Exhibit 1510-22

MEDIAN ISLAND WITH PEDESTRIAN REFUGE DETAIL

Preferred Option

Yellow painted curb
Yellow surface-mounted tubular markers
Shy distance 1 min. 2 recommended

Alternate Option

Yellow painted curb
Yellow surface-mounted tubular markers
Shy distance 1 min. 2 recommended

Minimum width of 5 feet to ensure a passing space is provided. Pedestrian access routes of multi-use paths that go through raised medians shall be the same width as the multi-use path.
PEDESTRIAN HYBRID BEACONS

PHBs are user-actuated LEDs that illuminate when a pedestrian manually pushes a button. Upon activation, the LED illuminates a flashing yellow beacon then changes to solid yellow to communicate to drivers to prepare to stop. The beacon changes to a steady red once it is safe for a pedestrian to cross, followed by a flashing red during the pedestrian clearance interval. PHBs have FHWA official approval and can be installed on either a two-lane or multi-lane roadway, as long as they are installed 100 feet from a side street, and are justified by an engineering study. Conceptual road sections with typical marked crosswalk signage and striping are shown below.

SIGNING + STRIPING

PHB SIGNAL

The sight distance for visibility of signal indications to approaching traffic should be sufficiently long to enable a vehicle traveling to stop before reaching the stop line. The minimum sight distance for signal visibility is the sum of stopping sight distance plus an assumed queue length.

SIGNAL VISIBILITY SIGHT DISTANCE

<table>
<thead>
<tr>
<th>Posted Speed (mph)</th>
<th>Minimal Sight Distance for Signal Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>215 ft</td>
</tr>
<tr>
<td>30</td>
<td>270 ft</td>
</tr>
<tr>
<td>35</td>
<td>325 ft</td>
</tr>
<tr>
<td>40</td>
<td>390 ft</td>
</tr>
<tr>
<td>45</td>
<td>460 ft</td>
</tr>
<tr>
<td>50</td>
<td>540 ft</td>
</tr>
</tbody>
</table>

1. Distances are based on the 2009 MUTCD, Table 4D-2.

LIGHTING

Illuminate the entire midblock pedestrian crossing, including any refuge area in the roadway, and the sidewalks or shoulders adjacent to the crosswalk per the current WSDOT Design Manual, Chapter 1040. Lighting analysis should be performed to confirm that light levels will meet the standards listed below. Emphasis should be placed on positive lighting of the pedestrians in the crosswalk and on the adjacent sidewalks.

FROM WSDOT DESIGN MANUAL EXHIBIT 1040-22: LIGHT LEVELS AND UNIFORMITY RATIOS

<table>
<thead>
<tr>
<th>Minimum Average Maintained Horizontal Light Level (footcandles)</th>
<th>Maximum Uniformity Ratio</th>
<th>Maximum Veiling Luminance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian/Area Classification</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Midblock pedestrian crossing</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Highways without full access control – intersections</td>
<td>1.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

2. Minimum Average Maintained Light Level / Minimum Light Level = Maximum Uniformity Ratio
3. Maximum Veiling Luminance / Average Luminance = Veiling Luminance Ratio

Note: Both midblock and intersection – different areas covered (see Exhibit 1040-B for intersection)

PHB SIGNAL

* This sign can be used in place of R10-23 for educational purposes for the first three years after installation.
Appendix A: Enhanced Pedestrian Crossing Treatment Decision Tool Memo
Introduction and Purpose

Clark County, Washington has been experiencing an increased demand for pedestrian facilities. As demand for pedestrian mode of travel continues to increase, the County is committed to provide infrastructure for seamless network and efficient movement of pedestrians, including a variety of pedestrian crossing treatments. Pedestrian crossings that safely connect pedestrian facilities to various origins and destinations are a key component in providing pedestrian infrastructure.

Clark County wishes to develop decision-making guidelines to determine appropriate pedestrian crossing treatments best suited for each location. The purpose of this memo is to provide background in the development of the enhanced pedestrian crossing treatment decision tool for Clark County. The guidelines consider a series of national best practices and peer agency review to provide background and influence into the development to the County’s tool.

This memo includes the following:

- Review of three national best practice guidelines pertaining to pedestrian crossing treatment warrants, including the MUTCD, NCHRP 562, and the “Zegeer Table” that includes specific criteria for selection of different types of pedestrian crossing treatments.
- Summaries of three peer agencies with adopted pedestrian crosswalk decision tools to provide background for the development of Clark County’s decision tool, including City of Portland, OR Bureau of Transportation (PBOT), City of Boulder, CO, and Virginia Department of Transportation (VDOT).
- A draft enhanced pedestrian crossing decision tool catered to Clark County conditions utilizing research gathered from peer agencies and national best practices that provides objective guidelines through a two-step process using:
 1. A pedestrian crossing treatment decision flow chart to identify the need for an enhanced crosswalk at an existing unmarked location; and
 2. An enhanced crossing treatment selection table providing various treatment options if enhanced pedestrian treatments are appropriate at a location under consideration, using a set of evaluation criteria.
Best Practice Review

Manual on Uniform Traffic Control Devices (MUTCD)
The MUTCD sets standards and provides guidance on a variety of traffic control devices to ensure uniformity among traffic control throughout the United States. The MUTCD provides specific guidance on pedestrian control features and pedestrian signal warrants.

Pedestrian control features included in the MUTCD are standard markings, signage, and pedestrian signal control features (e.g., pedestrian signal heads, pedestrian interval timing, and pedestrian detectors) for use in providing safe and uniform treatment for pedestrians to cross roadways. The MUTCD provides a series of pedestrian signal warrants for use when considering installing a full signal for safe pedestrian crossing.

- **Traffic signal using pedestrian volumes (Warrant 4):** A full traffic signal may be warranted at a location depending on pedestrian crossing volumes and major street approach volumes where pedestrians experience excessive delay crossing the major street (for either 4-hour or peak hour volumes). This criteria should not be applied where the distance to the nearest traffic signal or stop sign is less than 300 feet. Figure 1 illustrates the 4-hour and peak hour pedestrian volume traffic signal warrant graphs. There is a 70% reduction that can be used if the speed limit or the 85th-percentile speed on the major street exceeds 35 miles per hour, or if the intersection lies within the built-up area of an isolated community having a population of less than 10,000.
Figure 1. MUTCD Traffic Signal Warrant using Pedestrian Volumes

Figure 4C-5. Warrant 4, Pedestrian Four-Hour Volume

Figure 4C-7. Warrant 4, Pedestrian Peak Hour

- **Pedestrian hybrid beacon**: Should be examined at locations that do not meet full traffic signal warrants or a traffic signal installation is not feasible. Considers crosswalk length, pedestrian crossing volumes, and major street vehicle volumes for both low-speed roads (35 mph or less) and high-speed roads (greater than 35 mph). Figure 2
illustrates the peak hour hybrid beacon signal warrants for low- and high-speed roadways.

Figure 2. MUTCD Pedestrian Hybrid Beacon Warrants for Low- and High-Speed Roadways

NCHRP 562

NCHRP 562 - Improving Pedestrian Safety at Unsignalized Crossings was developed with two main objectives:

- Identify pedestrian crossing treatments to improve safety for pedestrians crossing high-volume, high-speed roadways at unsignalized locations.
- Recommend modifications to the MUTCD pedestrian traffic signal warrant guidance discussed above.

Pedestrian Crossing Treatments

NCHRP 562 provides a series of enhanced pedestrian crossing treatments in addition to what is included in the MUTCD. Table 1 summarizes the list of treatment options recommended for enhanced pedestrian crossings. These types of treatments have been documented as successful in encouraging motorists to yield to pedestrians, especially on high volume streets.

Table 1. NCHRP 562 Pedestrian Crossing Treatments

<table>
<thead>
<tr>
<th>Advance Signing</th>
<th>In-Roadway Warning Lights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Stop Line and Sign</td>
<td>Pedestrian Crossing Flags</td>
</tr>
<tr>
<td>Median Refuge Island</td>
<td>Overhead Flashing Amber Beacons</td>
</tr>
<tr>
<td>Raised Crosswalk</td>
<td>Pedestrian Crosswalk Signal</td>
</tr>
<tr>
<td>Curb Extension</td>
<td>Half Signal</td>
</tr>
<tr>
<td>Roadway Narrowing</td>
<td>HAWK Beacon Signal</td>
</tr>
<tr>
<td>Marking and Crossing Signs</td>
<td>Pedestrian Beacon</td>
</tr>
<tr>
<td>In-Street Pedestrian Crossing Signs</td>
<td>Traffic Signal</td>
</tr>
<tr>
<td>High-Visibility Signs and Markings</td>
<td></td>
</tr>
</tbody>
</table>

Refined Pedestrian Signal Warrant

NCHRP 562 provides modifications to MUTCD pedestrian signal warrants described above, including a more robust evaluation process, and guidance on additional enhanced pedestrian crossing treatments beyond what is included in the MUTCD. The NCHRP 562 Signal warrant process is described below and graphically represented in Figure 3:

1. Select Worksheet, either low-speed (35 mph or less) or high-speed (over 35 mph)
2. Check minimum pedestrian volume, using peak-hour pedestrian counts and a minimum of 20 pedestrians per hour in both directions
3. Check MUTCD Signal Warrant
4. Estimate approach pedestrian delay, using the 2010 Highway Capacity Manual (HCM) methodology
5. Select appropriate treatment, using the total pedestrian delay and the results of the crossing warrant plot shown in Figure 4, using the following category guidance:
 - **No treatment**: no pedestrian treatment recommended
 - **Crosswalk**: Standard crosswalk using MUTCD striping guidance
 - **Enhanced**: Permanent warning signs, markings, and/or beacons to enhance the visibility of the crossing location and pedestrians using the crossing
 - **Active**: “Active when present” devices that display a warning only when a pedestrian is present
 - **Red**: Devices that display a circular red indicator at pedestrian locations
 - **Signal**: traffic control signal
Figure 3. NCHRP Pedestrian Crossing Treatment Guidelines Flowchart

Step 1. Select worksheet based on (1) posted or statutory speed limit or the 85th percentile speed on the major street and (2) other conditions present:
 a) Worksheet 1 - 35 mph (55 km/h) or less
 b) Worksheet 2 - Exceeds 35 mph (55 km/h) or locations where the community has a less than 10,000 population or where a major transit stop is present

Step 2. Does the crossing meet minimum peak-hour pedestrian volumes to be considered for a traffic control device type of treatment?

 NO
 Consider median refuge islands, curb extensions, traffic calming, etc. as feasible. No traffic control devices are recommended.

 YES
 Go to Step 3

Step 3. Does the crossing meet the warrant for a traffic signal?

 NO
 Go to Step 4

 YES
 Warrant met, consider traffic signal if site is not within 300 ft (91 m) of another signal.

Step 4. Estimate pedestrian delay.

Step 5. Select treatment based upon total pedestrian delay and expected motorist compliance.

Figure 4. NCHRP Pedestrian Crossing Warrant Plot

“ZEGEER TABLE”

Many of the agencies that have developed enhanced pedestrian facility selection tables adapted their criteria and structure on the “Zegeer Table” included in the Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations sponsored by FHWA in 2002. Figure 5 details the “Zegeer Table”, which highlights enhanced pedestrian crossing actions using speed and traffic volume thresholds for various roadway types.
Figure 5. “Zegeer Table”

<table>
<thead>
<tr>
<th>Roadway Type (Number of Travel Lanes and Median Type)</th>
<th>Vehicle ADT ≤ 9,000</th>
<th>Vehicle ADT >9000 to 12,000</th>
<th>Vehicle ADT >12,000 - 15,000</th>
<th>Vehicle ADT > 15,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 30 mi/h</td>
<td>35 mi/h</td>
<td>40 mi/h</td>
<td>≤ 30 mi/h</td>
</tr>
<tr>
<td>2 Lanes</td>
<td>C</td>
<td>C</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>3 Lanes</td>
<td>C</td>
<td>C</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>Multi-Lane (4 or More Lanes) With Raised Median***</td>
<td>C</td>
<td>P</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>Multi-Lane (4 or More Lanes) Without Raised Median</td>
<td>C</td>
<td>P</td>
<td>N</td>
<td>P</td>
</tr>
</tbody>
</table>

* These guidelines include intersection and midblock locations with no traffic signals or stop signs on the approach to the crossing. They do not apply to school crossings. A two-way center turn lane is not considered a median. Crosswalks should not be installed at locations that could present an increased safety risk to pedestrians, such as where there is poor sight distance, complex or confusing designs, a substantial volume of heavy trucks, or other dangers, without first providing adequate design features and/or traffic control devices. Adding crosswalks alone will not make crossings safer, nor will they necessarily result in more vehicles stopping for pedestrians. Whether or not marked crosswalks are installed, it is important to consider other pedestrian facility enhancements (e.g., raised median, traffic signal, roadway narrowing, enhanced overhead lighting, traffic-calming measures, curb extensions), as needed, to improve the safety of the crossing. **These are general recommendations; good engineering judgment should be used in individual cases for deciding where to install crosswalks.**

Where the speed limit exceeds 40 mph (64.4 km/h) marked crosswalks alone should not be used at unsignalized locations.

C = Candidate sites for marked crosswalks. Marked crosswalks must be installed carefully and selectively. Before installing new marked crosswalks, an engineering study is needed to determine whether the location is suitable for a marked crosswalk. For an engineering study, a site review may be sufficient at some locations, while a more in-depth study of pedestrian volume, vehicle speed, sight distance, vehicle mix, etc. may be needed at other sites. It is recommended that a minimum of 20 pedestrian crossings per peak hour (or 1.5 or more elderly and/or child pedestrians) exist at a location before placing a high priority on the installation of a marked crosswalk alone.

P = Possible increase in pedestrian crash risk may occur if crosswalks are added without other pedestrian facility enhancements. These locations should be closely monitored and enhanced with other pedestrian crossing improvements, if necessary, before adding a marked crosswalk.

N = Marked crosswalks alone are insufficient, since pedestrian crash risk may be increased due to providing marked crosswalks alone. Consider using other treatments, such as traffic-calming treatments, traffic signals with pedestrian signals where warranted, or other substantial crossing improvement to improve crossing safety for pedestrians.

*** The raised median or crossing island must be at least 4 ft (1.2 m) wide and 6 ft (1.8 m) long to adequately serve as a refuge area for pedestrians in accordance with MUTCD and American Association of State Highway and Transportation Officials (AASHTO) guidelines.

Source: Zegeer, et. al., FHWA, 2002.
Peer Agency Review

The development of Clark County’s *enhanced pedestrian crossing treatment decision tool* relies on information gathered from peer agencies with adopted pedestrian crossing decision making processes. PBOT, the City of Boulder, and VDOT each follow unique decision making steps when considering an enhanced pedestrian crossing at specific locations. Each agency’s process is summarized below.

City of Portland, OR Bureau of Transportation (PBOT)

PBOT developed a simple and effective tool to assess the need for various types of pedestrian crossing facilities at certain locations on city-owned streets. PBOT’s tool includes a decision tree to assist in justifying the need for a pedestrian crossing facility, and if warranted, the type of facility that should be installed at locations under consideration. PBOT adopted a crosswalk assessment tool to tailor crosswalk treatments at specific locations, using the following two-step process:

1. A flow chart that determines the need for enhanced crosswalk treatments at specific locations (See Figure 6 below).
2. If the flow chart determines that a location warrants an enhanced crosswalk, an evaluation table that provides guidance in determining the recommended crossing treatment type depending on the number of roadway lanes, Average Daily Traffic (ADT), and speed at the location under consideration (See Figure 7 below). The table includes four unique enhanced crossing facilities types for consideration. PBOT provides public data on traffic counts, speeds, and roadway types for use in considering the need and type of pedestrian crossing facility.

PBOT’s decision tool includes several unique factors that were considered when developing Clark County’s decision tool, as described in Table 2.

Table 2. PBOT’s Pedestrian Crossing Treatment Tool Features

<table>
<thead>
<tr>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The flow chart (Figure 6):</td>
</tr>
<tr>
<td>• Does not consider specific guidance on a location with an existing stop sign</td>
</tr>
<tr>
<td>• Does not consider specific guidance on school crossing locations</td>
</tr>
<tr>
<td>• Eliminates any location that crosses a roadway with under 4,000 ADT, limiting the possibility of installing any type of crosswalk on lower volume facilities</td>
</tr>
<tr>
<td>• Considers a minimum pedestrian volume trigger of 20 pedestrians or cyclists per hour</td>
</tr>
<tr>
<td>• Considers crossing treatment at a location within 300 feet of an existing marked or protected crossing if it meets twice the minimum pedestrian volumes</td>
</tr>
<tr>
<td>• Does not consider distance to nearest marked or protected crossing if an unsignalized multi-use path or neighborhood greenway warrants a crossing, which may result in closely spaced crossing locations</td>
</tr>
<tr>
<td>The evaluation table (Figure 7):</td>
</tr>
<tr>
<td>• Categorizes facility selection for 2-lane, 3-lane (with and without raised median), and multi-lane (4+, with and without raised median) roadway facilities</td>
</tr>
<tr>
<td>• Categorizes facility selection into three speed groups: 30 mph or under, 35 mph, and 40 mph and over, limiting the need for guidance on higher speed (45+) roadway facilities</td>
</tr>
<tr>
<td>• Includes four enhanced crossing treatment categories, including a specific facility category that includes a marked crosswalk, island or curb extension, and enhanced signing and striping</td>
</tr>
</tbody>
</table>
Figure 6. PBOT Crosswalk Guideline Flow Chart

CROSSWALK SITE EVALUATION GUIDELINES
How PBOT identifies locations that would benefit from crosswalk enhancements

Start here

Identify potential location for crosswalk enhancement

- Is there a traffic signal there?
 - Yes: Install standard marked crosswalk and curb ramps
 - No

- Is it a multi-use path or neighborhood greenway crossing?
 - Yes
 - Is there adequate stopping sight distance?
 - Yes: Enhance crosswalk (see table for design details)
 - No: No action recommended
 - No

- Is the nearest marked or protected crossing more than 300 feet away?
 - Yes: No action recommended
 - No

- Does it meet the minimum pedestrian volumes?**
 - Yes
 - Does it meet twice the minimum pedestrian volumes?2
 - Yes
 - Remove obstruction, lower speed limit or consider advance or active warning3
 - Enhance crosswalk (see table for design details)
 - No: No action recommended
 - No

- Does it meet the average daily traffic greater than 4,000 vehicles per day?1
 - No
 - If not feasible

*Exceptions to the 4,000 VPD threshold may be made for school crossings that are patrolled

1 Minimum 20 people walking or biking per hour in any one hour
2 Minimum 20 people walking or biking per hour in any one hour
3 Advance or active warning can refer to a variety of tools, including signs or lights.

Source: Portland Bureau of Transportation
Figure 7. PBOT Crosswalk Options Table

<table>
<thead>
<tr>
<th>CROSSWALK DESIGN BY ROADWAY TYPE*</th>
<th>VEHICLE ADT > 4,000 - 9,000</th>
<th>VEHICLE ADT > 9,000 - 12,000</th>
<th>VEHICLE ADT > 12,000 - 15,000</th>
<th>VEHICLE ADT > 15,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO LAKES</td>
<td><30 MPH</td>
<td>35 MPH</td>
<td>40+ MPH</td>
<td><30 MPH</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>THREE LAKES WITH RAISED MEDIAN</td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>THREE LAKES WITHOUT RAISED MEDIAN</td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>MULTILANE WITH RAISED MEDIAN</td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td>MULTILANE WITHOUT RAISED MEDIAN</td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Blue</td>
</tr>
</tbody>
</table>

*All crossings must be scoped by an engineer to ensure recommended treatment is appropriate and ADA ramps and illumination are in place.

- Marked Crosswalk
- Marked Crosswalk, island or curb extensions, enhanced signing and striping
- Marked Crosswalk and enhanced/active warning (islands and RRFB's)
- Marked Crosswalk and pedestrian hybrid or full signal

Source: [Portland Bureau of Transportation](https://www.portlandoregon.gov/pbot)
City of Boulder, Colorado

The City of Boulder established a long-term goal of providing safe and efficient pedestrian facilities to reduce the dependency on the personal automobile. Boulder originally developed pedestrian crossing treatment warrants in 1996, but has since refined the decision process to guide the implementation of enhanced crossing facilities. The City uses the following 4-step evaluation process in coordination with an evaluation worksheet when considering and evaluating enhanced pedestrian crossing improvements:

1. **Identification and description of crossing locations**, including connections to a multi-use path, speed limits, and existing traffic control.

2. **Physical data collection**, including roadway configuration (number of lanes, presence of a painted/raised median), distance to nearest marked or protected crossing, and stopping sight distance for all approaches.

3. **Traffic data collection and operational observations**, including pedestrian crossing volumes during peak hours of use (and in some cases up to three consecutive days to determine pedestrian volume fluctuation), vehicle ADT along the major roadway at the crossing location, and vehicle queues from adjacent intersections.

4. **Applying data to the**:
 - *Pedestrian Crossing Treatment Flowchart* (Figure 8)
 - *Criteria for Crossing Treatment at Uncontrolled Locations* (Figure 9)
 - *City of Boulder Guidelines for the Installation of HAWK Beacons, Pedestrian Signals, or RRFB Signs on Low- and High-Speed Roadways* (Figure 10), which tailors the pedestrian signal warrant methodology developed in NCHRP 562 to City of Boulder conditions

Boulder’s guidelines also include several supplemental policies to guide the installation of crossing treatments in the City, including crosswalk lighting, avoiding overuse of crossing treatments, multi-use path crossings, textured and colored pavement treatments, accessible crosswalks, raised crossings at right-turn bypass islands, and removal of treatments.

Boulder’s decision tool includes several unique factors that were considered when developing Clark County’s decision tool, as described in Table 3.
Table 3. Boulder’s Pedestrian Crossing Treatment Tool Features

<table>
<thead>
<tr>
<th>The flow chart (Figure 8):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Considers specific guidance on locations that are uncontrolled and controlled, including stop signs</td>
</tr>
<tr>
<td>• Considers specific guidance on school crossing locations</td>
</tr>
<tr>
<td>• Eliminates any location that crosses a roadway with under 1,500 ADT, increasing the possibility of installing a crosswalk on lower volume facilities</td>
</tr>
<tr>
<td>• Considers a variety of minimum pedestrian volume triggers depending on the time period (20 pedestrians per hour for any one hour; 18 pedestrians per hour for any two hours, 15 pedestrians per hour for any three hours)</td>
</tr>
<tr>
<td>• Counts young, elderly, and disabled pedestrians as double toward volume thresholds</td>
</tr>
<tr>
<td>• Considers crossing treatment at a location within 300 feet of an existing marked or protected crossing if it meets twice the minimum pedestrian volumes</td>
</tr>
<tr>
<td>• Considers crossing treatment for locations that do not meet minimum pedestrian volume triggers but serves a transit stop</td>
</tr>
<tr>
<td>• Does not consider distance to nearest marked or protected crossing if an uncontrolled multi-use path warrants a crossing, which may result in closely spaced crossing locations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The criteria table (Figure 9):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Categorizes facility selection for 2-lane (one-way or two-way), 3-lane (with raised or striped median), 4-lane (without median), 5-lane (with raised or striped median), and 6-lane (with or without median) roadway facilities</td>
</tr>
<tr>
<td>• Categorizes facility selection into three speed groups: 30 mph or under 35 mph, 40 mph, and 45 mph or greater, improving guidance on higher speed (45+) roadway facilities</td>
</tr>
<tr>
<td>• Includes six enhanced crossing treatment categories, each with specific guidance pertaining to signing and striping suggestions</td>
</tr>
<tr>
<td>• Includes suggestions on determining the possibility of reducing speed limits to trigger different treatment options</td>
</tr>
<tr>
<td>• Suggests conducting additional evaluation for signalized crossing treatments for low- and high-speed roadways using Figure 10 below</td>
</tr>
</tbody>
</table>
Figure 8. Boulder’s Pedestrian Crossing Treatment Flowchart

Source: City of Boulder, CO, 2011.
Figure 9. Boulder’s Criteria for Crossing Treatment at Uncontrolled Locations

| Roadway Configuration | No. of lanes crossed to reach a refuge
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Lanes (one way street)</td>
<td>2</td>
</tr>
<tr>
<td>2 Lanes (two way street with no median)</td>
<td>2</td>
</tr>
<tr>
<td>3 Lanes w/Raised Median</td>
<td>1 or 2</td>
</tr>
<tr>
<td>3 Lanes w/Striped Median</td>
<td>3</td>
</tr>
<tr>
<td>4 Lanes (two way street with no median)</td>
<td>4</td>
</tr>
<tr>
<td>5 Lanes w/Raised Median</td>
<td>2 or 3</td>
</tr>
<tr>
<td>6 Lanes w/Striped Median</td>
<td>6</td>
</tr>
<tr>
<td>6 Lanes (two way street with or without median)</td>
<td>3 to 6</td>
</tr>
</tbody>
</table>

Notes:
1. Painted medians can never be considered a refuge for a crossing pedestrian. Similarly, a 4- foot wide raised median next to a left turn lane can only be considered a refuge for pedestrians if the left turning volume is less than 20 vehicles per hour (meaning that in most cases the left turn lane is not occupied while the pedestrian is crossing).
2. A multiple threat lane is defined as a through lane where it is possible for a pedestrian to step out from in front of a stopped vehicle in the adjacent travel lane (either through or turn lane).

Treatment Descriptions:

A Install marked crosswalk with enhanced road-side signs

Specific Guidance: Install marked crosswalk with “State Law - Yield to Pedestrian” signs mounted on the side of the roadway with standard (W11-2) advance pedestrian warning signs; use S1-1 signs for School Crossing locations.

B Install marked crosswalk with enhanced road-side and in-roadway (bollard mounted) signs

Specific Guidance: Install marked crosswalk with “State Law - Yield to Pedestrian” signs mounted on the side of the roadway and on in-roadway bollards; use standard (W11-2) advance pedestrian warning signs; use S1-1 signs for School Crossing locations.

C Install marked crosswalk with enhanced signs and geometric improvements to increase pedestrian visibility and reduce exposure

Specific Guidance: For 2 or 3-lane roadways, install marked crosswalk with “State Law - Yield to Pedestrian” signs mounted on the side of the roadway and on in-roadway bollards or median mounted signs; use standard (W11-2) advance pedestrian warning signs; use S1-1 signs for School Crossing locations. Add neckdowns or median refuge islands to shorten the pedestrian crossing distance and increase pedestrian visibility to motorists.

D Install marked crosswalk with enhanced signs, pedestrian activated RRFBs, and geometric improvements to increase pedestrian visibility and reduce exposure

Specific Guidance: Install raised median refuge island (unless it is a one-way street or one already exists) to shorten the pedestrian crossing distance and increase pedestrian visibility to motorists. If a median refuge can not be constructed on a two-way street, Go To Scenario E. Install marked crosswalk with “State Law - Yield to Pedestrian” WITH pedestrian activated RRFBs mounted on the side of the roadway and on median mounted signs; use standard (W11-2) advance pedestrian warning signs; use S1-1 signs for School Crossing locations. Consider adding neckdowns at the crossing if on-street parking exists on the roadway and storm drain considerations allow. [Note: If pedestrian volume falls above the RRFB limit line on Figure 2, consider HAWK beacon, pedestrian traffic signal, or grade-separated crossing.]

E Do not install marked crosswalk at uncontrolled crossing. Determine if the speed limit can be effectively reduced to 40 mph AND a raised refuge median can be installed. If so, utilize Scenario D criteria above. If this is not possible, or if pedestrian volume falls above the RRFB limit line on Figure 2, consider HAWK beacon, pedestrian traffic signal, or grade-separated crossing.

Specific Guidance: Consider HAWK beacon, pedestrian traffic signal or grade-separated crossing; application of these treatments will consider corridor signal progression, existing grades, physical contraints, and other engineering factors.

F Do not install marked crosswalk at uncontrolled crossing with 3 or more THROUGH lanes per direction or where the speed limit is 45 mph and/or there is not a median refuge on a 5-lane crossing. Consider HAWK beacon, pedestrian traffic signal, or grade-separated crossing.

Specific Guidance: Consider HAWK beacon, pedestrian traffic signal or grade-separated crossing; application of these treatments will consider corridor signal progression, existing grades, physical contraints, and other engineering factors.

Source: [City of Boulder, CO, 2011](#).
Figure 10. City of Boulder Guidelines for the Installation of HAWK Beacons, Pedestrian Signals, or RRFB Signs on Low- and High-Speed Roadways

* RECOMMENDATION BASED ON CITY OF BOULDER SAFETY EVALUATIONS AT EXISTING RRFB SITES AND OBSERVED IMPACTS TO VEHICULAR TRAFFIC OPERATIONS
Virginia Department of Transportation (DOT)
The Virginia Transportation Research Council (a cooperative organization sponsored by the Virginia DOT and the University of Virginia) developed a marked crosswalk justification process to determine the need for special treatment at uncontrolled crossing locations, which includes the following two-step process:

- Sufficient demand for crosswalk installation must exist at uncontrolled crossings, and need must be determined using a flow chart that evaluates the justification for a marked crosswalk at specific locations (See Figure 11 below).
- If the flow chart determines that a location warrants an enhanced crosswalk, an evaluation table provides guidance in determining the recommended crossing treatment type depending on the number of roadway lanes, vehicle ADT, and speed at the location under consideration (See Figure 12 below). The table includes guidance on the recommended action, including specific guidance on a variety of different devices:
 - **Level 1**: Standard crosswalks, raised mid-block crosswalks, and rumble strips
 - **Level 2**: High-visibility crosswalks
 - **Level 3**: Refuge islands, split pedestrian crossovers, bulb-outs (curb extensions)
 - **Level 4**: Overhead signs and flashing beacons, in-roadway warning lights
 - **Level 5**: Pedestrian-actuated signals, grade separated crossings

VDOT’s decision tool includes several unique factors that were considered when developing Clark County’s decision tool, as described in Table 4.

Table 4. VDOT’s Pedestrian Crossing Treatment Tool Features

<table>
<thead>
<tr>
<th>The flow chart (Figure 11):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only considers specific guidance at uncontrolled locations</td>
</tr>
<tr>
<td>Includes general guidance on pedestrian generators (including schools)</td>
</tr>
<tr>
<td>Does not have any minimum ADT threshold, allowing all crossing locations to be considered regardless of roadway volumes</td>
</tr>
<tr>
<td>Considers a variety of minimum pedestrian volume triggers depending on the time period and pedestrian type (20 pedestrians per hour for any one hour, 15 elderly and/or children per hour for any one hour, 60 pedestrians in four hours)</td>
</tr>
<tr>
<td>Does not include any guidance for multi-use paths</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The evaluation table (Figure 12):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorizes facility selection for 2-lane, 3-lane, and multi-lane (4+, with and without raised median) roadway facilities</td>
</tr>
<tr>
<td>Categorizes facility selection into three speed groups: 30 mph or under, 35 mph, and 40 mph and over, limiting the need for guidance on higher speed (45+) roadway facilities</td>
</tr>
<tr>
<td>Includes three types of recommended actions, rather than specific treatment type, although suggests considerations of various improvement types</td>
</tr>
</tbody>
</table>
Figure 11. VDOT Flowchart for Justifying Installation of Marked Crosswalks at Uncontrolled Locations

Candidate sites for marked crosswalks. Marked crosswalks must be installed carefully and selectively. First, an engineering study is needed to determine whether the location is suitable for a marked crosswalk. For an engineering study, a site review may be sufficient at some locations, but a more in-depth study of pedestrian volume, vehicle speed, sight distance, vehicle mix, etc., may be needed at other sites. If the speed limit is less than or equal to 30 mph, use Level 1 or Level 2 devices. If the speed limit exceeds 30 mph, use Level 2 devices. Refer to Level 1 and Level 2 devices in the Special Treatments section.

Probable candidate sites for marked crosswalks. Pedestrian crash risk may increase if marked crosswalks are added without other pedestrian facility enhancements. Add Level 3 or Level 4 devices if feasible. Refer to Level 3 and Level 4 devices in the Special Treatments section.

Marked crosswalks alone are insufficient, since pedestrian crash risk may increase if only marked crosswalks are provided. Consider using Level 5 devices if feasible. If not feasible, use multiple treatments from Level 2, Level 3, or Level 4 devices. Refer to Level 5 devices in the Special Treatments section.

These guidelines include intersection and mid-block locations with no traffic signal or stop sign on the approach to the crossing. They do not apply to school crossings. A two-way center turn lane is not considered a median. Crosswalks should not be installed at locations that could present an increased safety risk to pedestrians, such as where there is poor site distance, complex or confusing designs, substantial volumes of heavy trucks, or other dangers, without first providing adequate design features and/or traffic control devices. Adding crosswalks alone will not make a crossing safer or necessarily result in more drivers stopping for pedestrians. Whenever marked crosswalks are installed, it is important to consider other pedestrian facility enhancements, as needed, to improve the safety of the crossing (for example, raised median, traffic signal, roadway narrowing, enhanced overhead lighting, traffic calming measures, curb extensions). These are general recommendations; an engineering study should be performed to determine where to install marked crosswalks.

Where the posted speed limit or 85th percentile speed exceeds 40 mph, marked crosswalks alone should not be used at uncontrolled intersections with an ADT greater than 15,000.

The raised median or refuge island must be at least 4 feet (1.2 meters) wide and 6 feet (1.8 meters) long to adequately serve as a refuge area for pedestrians.

Clark County’s Enhanced Pedestrian Crossing Treatment Decision Tool

Utilizing research gathered from national best practices and peer agencies described above, the draft Clark County enhanced pedestrian crossing treatment decision tool provides guidance on when a marked crosswalk or other treatments would be appropriate using a set of criteria and triggers. The tool follows a two-step process, similar to the peer agencies reviewed above:

- Figure 13 illustrates the draft Clark County pedestrian crossing treatment decision flow chart, which identifies when an enhanced crosswalk at an existing unmarked location would be appropriate using a series of criteria.
- Figure 14 details the draft Clark County enhanced crossing treatment selection table, providing various treatment options if enhanced pedestrian treatments are justified at a location under consideration. Figure 14 is largely based on the original “Zegeer Table” structure and treatment selection.

Both the flow chart and treatment selection table were influenced by county facility data provided by Clark County staff, including the following:

- Approximately 82% of all Clark County collector and arterials roads are 3 lanes or fewer, with 2-lane roads representing more than 79% of all County collector and arterials roads.
- In Clark County, the average ADT is 12,000 for urban arterials and is 2,400 for urban collectors.
- In Clark County, the average ADT is 5,000 for rural arterials and is 1,600 for rural collectors.

Clark County’s decision tool includes several unique factors that incorporate a combination of components from peer agencies and other factors, as described in Table 5.
Table 5. Clark County’s Pedestrian Crossing Treatment Tool Features

<table>
<thead>
<tr>
<th>The flow chart (Figure 13):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Considers specific guidance on locations that are uncontrolled and controlled (for both signals and stop signs)</td>
<td></td>
</tr>
<tr>
<td>• Considers specific guidance on school crossing locations, and refers to the existing Clark County School Zone Traffic Control Policy when appropriate</td>
<td></td>
</tr>
<tr>
<td>• Eliminates any location that crosses a roadway with under 2,500 ADT, increasing the possibility of installing a crosswalk on lower volume facilities</td>
<td></td>
</tr>
<tr>
<td>• Considers a variety of minimum pedestrian volume triggers depending on the time period (20 pedestrians per hour for any one hour; 18 pedestrians per hour for any two hours, 15 pedestrians per hour for any three hours)</td>
<td></td>
</tr>
<tr>
<td>• Considers 300 feet as minimum separation distance to nearest marked or protected crossing if an uncontrolled multi-use path warrants a crossing, which limits the occurrence of closely spaced crossing locations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The treatment selection table (Figure 14):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Categorizes facility selection for 2-lane, 3-lane, and multi-lane (4+, with and without raised median) roadway facilities.</td>
<td></td>
</tr>
<tr>
<td>• Categorizes facility selection into three speed groups: 30 mph or under, 35 mph, and 40 mph and over</td>
<td></td>
</tr>
<tr>
<td>• Includes five types of recommended actions, including marked crosswalks, enhanced pedestrian crossing treatments (e.g., islands and RRFBs), and regulatory traffic controls including hybrid beacon and signalized crossings</td>
<td></td>
</tr>
</tbody>
</table>
Figure 13. Clark County Pedestrian Crossing Treatment Decision Flow Chart
Figure 14. Clark County Enhanced Crossing Treatment Selection Table

<table>
<thead>
<tr>
<th>ROADWAY TYPE (NUMBER OF TRAVEL LANES)</th>
<th>VEHICLE ADT > 2,500 TO 4,000</th>
<th>VEHICLE ADT > 4,000 TO 9,000</th>
<th>VEHICLE ADT > 9,000 TO 12,000</th>
<th>VEHICLE ADT > 12,000 TO 15,000</th>
<th>VEHICLE ADT > 15,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 30 MPH</td>
<td>35 MPH</td>
<td>> 40 MPH</td>
<td>< 30 MPH</td>
<td>35 MPH</td>
</tr>
<tr>
<td>2 Lanes</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>3 Lanes</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Multi-Lane (4 or more Lanes)</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

- A: Marked Crosswalk
- B: Marked Crosswalk with RRFB
- C: Marked Crosswalk with Island
- D: Marked Crosswalk with enhancement / active warning (islands and RRFB's)
- E: Marked Crosswalk and pedestrian hybrid or full signal

* Where the speed limit exceeds 40 mph marked crosswalks alone should not be used at unsignalized locations.

Appendix B: Crossing Evaluation Worksheets
LOCATION DESCRIPTION

Major Street: _________________________ Crossing or Minor Street Location: _______________

Is this a shared-use path crossing? □ Yes □ No

Existing Crossing Treatments (if any): __

Nearby Pedestrian Generators (School, transit stop, commercial, etc.): __________________________

PHYSICAL DATA

Major Roadway Configuration:

☐ 2-Lane ☐ 3-Lane w/Striped Median ☐ 4 Lane
☐ 3-Lane w/Raised Median ☐ 5 Lane w/Striped Median
☐ 6 Lane ☐ Other: _______________

Crossing Distance By Direction: _____ ft total _____ ft to median island with pedestrian refuge

Marked or Protected Pedestrian Crossing Nearby? □ Yes □ No

Distance from location: _______ ft

Stopping Sight Distance (SSD) = _______ ft

PEDESTRIAN/TRAFFIC DATA

Pedestrian Crossing Volumes:

<table>
<thead>
<tr>
<th>Time:</th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Day of Week:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Total Pedestrians:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Total Pedestrians /hr:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

UNCONTROLLED CROSSING

Minor Street (if applicable) ADT=

Major Street ADT=

Posted Speed =
LOCATION DESCRIPTION

Major Street: _________________________ Minor Street: ___________________________

Is this a shared-use path crossing? □ Yes □ No

Existing Traffic Control: □ Stop Sign □ Traffic Signal □ Roundabout □ Other: ______

Existing Crossing Treatments (if any): __

Nearby Pedestrian Generators (School, transit stop, commercial, etc.): ______________________

PHYSICAL DATA

Minor Roadway Configuration: □ 2-Lane □ 3-Lane w/Striped Median □ 3 Lane w/Raised Median

Crossing Distance By Direction: _____ ft total ____ ft to median island with pedestrian refuge

PEDESTRIAN/TRAFFIC DATA

Pedestrian Crossing Volumes:

<table>
<thead>
<tr>
<th>Time:</th>
<th>1 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Day of Week:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Total Pedestrians:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Total Pedestrians /hr:</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

STOP CONTROLLED CROSSING

Minor Street ADT=

Major Street ADT=

Posted Speed =
SCHOOL CROSSWALK EVALUATION WORKSHEET

LOCATION DESCRIPTION

Major Street: _________________________ Crossing or Minor Street Location:_________________

Is the crossing located adjacent to a school and/or shown in School Route Plan? □ Yes □ No

Existing Crossing Treatments (if any): __

School Level: □ Preschool □ Elementary □ Middle □ High □ College □ Other

PHYSICAL DATA

Major Roadway □ 2-Lane □ 5 Lane w/Striped Median
Configuration: □ 3-Lane w/Striped Median □ 5 Lane w/Raised Median
□ 3 Lane w/Raised Median □ 6 Lane
□ 4 Lane □ Other: _______________

Crossing Distance By Direction: _____ ft total _____ ft to median island with pedestrian refuge

Marked or Protected Pedestrian Crossing Nearby? □ Yes □ No

Distance from location: _______ft

Stopping Sight Distance (SSD) = _______ ft

PEDESTRIAN/TRAFFIC DATA

Children Crossing Volumes:

<table>
<thead>
<tr>
<th>1 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
</tr>
<tr>
<td>Date/Day of Week: /</td>
</tr>
<tr>
<td>Total Children:</td>
</tr>
<tr>
<td>Total Children/hr: /</td>
</tr>
</tbody>
</table>

SCHOOL CROSSWALK

Minor Street (if applicable)
ADT=
Major Street
ADT=
Posted Speed =
Appendix C: HCM Pedestrian Delay Analysis Results
Appendix C – HCM Pedestrian Crossing Delay

This appendix describes the Synchro analysis that was used to calculate pedestrian delay for pedestrian crossings across an uncontrolled approach of a two-way stop controlled intersection or at a mid-block location. The Synchro analysis was used to validate the development of the Enhanced Crossing Treatment Selection Table to assess how much delay a crossing pedestrian would experience when using various treatments, including: marked crosswalk, flashing beacon, or a median island with pedestrian refuge.

The Highway Capacity Manual (HCM) 6th Edition analysis calculates pedestrian delay for pedestrian crossings across an uncontrolled approach of a two-way stop controlled intersection or at a mid-block location. The methodology correlates pedestrian delay in seconds per pedestrian to specified level of service standards, as displayed in Table 1.

Table 1. HCM Exhibit 20-3 LOS Criteria: Pedestrian Mode

<table>
<thead>
<tr>
<th>LOS</th>
<th>Control Delay (s/p)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0-5</td>
<td>Usually no conflicting traffic</td>
</tr>
<tr>
<td>B</td>
<td>5-10</td>
<td>Occasionally some delay due to conflicting traffic</td>
</tr>
<tr>
<td>C</td>
<td>10-20</td>
<td>Delay noticeable to pedestrians, but not inconveniencing</td>
</tr>
<tr>
<td>D</td>
<td>20-30</td>
<td>Delay noticeable and irritating, increased likelihood of risk taking</td>
</tr>
<tr>
<td>E</td>
<td>30-45</td>
<td>Delay approaches tolerance level, risk-taking behavior likely</td>
</tr>
<tr>
<td>F</td>
<td>>45</td>
<td>Delay exceeds tolerance level, high likelihood of pedestrian risk taking</td>
</tr>
</tbody>
</table>

The County chose a threshold of between LOS B and C, or less than 15 seconds of delay where no treatment would be necessary due to the minor delay incurred by the pedestrian. Additionally, the County selected a threshold of LOS D, or less than 30 seconds of delay where only a marked crosswalk would be sufficient without an enhanced pedestrian crossing treatment. Table 2 details the results of the Synchro analysis for different roadway widths and volumes. Any delay of less than 15 seconds for crossing without a treatment, or less than 30 seconds for crossing with a treatment are highlighted to show treatments or lack of a treatment needed that meet the acceptable County thresholds for pedestrian delay.

The pedestrian delay analysis conducted in Synchro\(^1\) assumed that the minimum pedestrian activity threshold was met, and covered the following parameters:

- Roadway cross sections – from two to five lane sections, with and without bike lanes or shoulders
- Pedestrian crossing distance – from 24 to 74 feet based on the cross section and standards assumed width for each roadway element
- Volume – from 300 to 1,600 vehicles/hour

\(^1\) Trafficware Synchro 10
Pedestrian crossing treatment – from no treatment (0% yield rate), to signs and markings (20% yield rate) and flashing beacons (81% yield rate) as well as a median island with pedestrian refuge.

Table 2. Pedestrian Delay (seconds)

<table>
<thead>
<tr>
<th>Volume (veh/hr)</th>
<th>Pedestrian Crossing Treatment</th>
<th>Number of Travel Lanes & Crossing Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>None</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Marked Crosswalk</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Median Island</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>None</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Marked Crosswalk</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Median Island</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>None</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>Marked Crosswalk</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Flashing Beacon</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Median Island</td>
<td>-</td>
</tr>
<tr>
<td>1,000</td>
<td>None</td>
<td>42.2</td>
</tr>
<tr>
<td></td>
<td>Marked Crosswalk</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>Flashing Beacon</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Median Island</td>
<td>-</td>
</tr>
<tr>
<td>1,300</td>
<td>None</td>
<td>84.7</td>
</tr>
<tr>
<td></td>
<td>Marked Crosswalk</td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td>Flashing Beacon</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Median Island</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Flashing Beacon + Median Island</td>
<td>2.3</td>
</tr>
<tr>
<td>1,600</td>
<td>None</td>
<td>167.7</td>
</tr>
<tr>
<td></td>
<td>Marked Crosswalk</td>
<td>93.1</td>
</tr>
<tr>
<td></td>
<td>Flashing Beacon</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Median Island</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Flashing Beacon + Median Island</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Notes:
1) Delay highlighted in green identifies delay of less than 30 seconds for crossings with a pedestrian treatment OR a delay of less than 15 seconds for crossings without a pedestrian treatment, these indicate that the delays meet the acceptable Clark County thresholds for pedestrian delay.
2) Delay reported for median island pedestrian crossing treatment is for one stage of the crossing.